33 research outputs found

    Dental extraction, intensity-modulated radiotherapy of head and neck cancer, and osteoradionecrosis : A systematic review and meta-analysis

    Full text link
    Objective: To seek evidence for osteoradionecrosis (ORN) after dental extractions before or after intensity-modulated radiotherapy (IMRT) for head and neck cancer (HNC). Methods: Medline/PubMed, Embase, and Cochrane Library were searched from 2000 until 2020. Articles on HNC patients treated with IMRT and dental extractions were analyzed by two independent reviewers. The risk ratios (RR) and odds ratios (OR) for ORN related to extractions were calculated using Fisher's exact test. A one-sample proportion test was used to assess the proportion of pre- versus post-IMRT extractions. Forest plots were used for the pooled RR and OR using a random-effects model. Results: Seven of 630 publications with 875 patients were eligible. A total of 437 (49.9%) patients were treated with extractions before and 92 (10.5%) after IMRT. 28 (3.2%) suffered from ORN after IMRT. ORN was associated with extractions in 15 (53.6%) patients, eight related to extractions prior to and seven cases related to extractions after IMRT. The risk and odds for ORN favored pre-IMRT extractions (RR = 0.18, 95% CI: 0.04-0.74, p = 0.031, I2 = 0%, OR = 0.16, 95% CI: 0.03-0.99, p = 0.049, I2 = 0%). However, the prediction interval of the expected range of 95% of true effects included 1 for RR and OR. Conclusion: Tooth extraction before IMRT is more common than after IMRT, but dental extractions before compared to extractions after IMRT have not been proven to reduce the incidence of ORN. Extractions of teeth before IMRT have to be balanced with any potential delay in initiating cancer therapy. Keywords: Dental care; Dental management; Oropharyngeal cancer; Osteoradionecrosis prevention; Radiation toxicit

    A 2.5D convolutional neural network for HPV prediction in advanced oropharyngeal cancer

    Full text link
    ackground Infection with human papilloma virus (HPV) is one of the most relevant prognostic factors in advanced oropharyngeal cancer (OPC) treatment. In this study we aimed to assess the diagnostic accuracy of a deep learning-based method for HPV status prediction in computed tomography (CT) images of advanced OPC. Method An internal dataset and three public collections were employed (internal: n = 151, HNC1: n = 451; HNC2: n = 80; HNC3: n = 110). Internal and HNC1 datasets were used for training, whereas HNC2 and HNC3 collections were used as external test cohorts. All CT scans were resampled to a 2 mm3 resolution and a sub-volume of 72x72x72 pixels was cropped on each scan, centered around the tumor. Then, a 2.5D input of size 72x72x3 pixels was assembled by selecting the 2D slice containing the largest tumor area along the axial, sagittal and coronal planes, respectively. The convolutional neural network employed consisted of the first 5 modules of the Xception model and a small classification network. Ten-fold cross-validation was applied to evaluate training performance. At test time, soft majority voting was used to predict HPV status. Results A final training mean [range] area under the curve (AUC) of 0.84 [0.76–0.89], accuracy of 0.76 [0.64–0.83] and F1-score of 0.74 [0.62–0.83] were achieved. AUC/accuracy/F1-score values of 0.83/0.75/0.69 and 0.88/0.79/0.68 were achieved on the HNC2 and HNC3 test sets, respectively. Conclusion Deep learning was successfully applied and validated in two external cohorts to predict HPV status in CT images of advanced OPC, proving its potential as a support tool in cancer precision medicine

    Evaluation of the prognostic value of the ESTRO EORTC classification of oligometastatic disease in patients treated with stereotactic body radiotherapy: A retrospective single center study

    Full text link
    PURPOSE To explore the prognostic value of the oligometastatic disease (OMD) states as proposed by the European Society for Radiotherapy and Oncology (ESTRO) European Organisation for Research and Treatment of Cancer (EORTC) classification system. MATERIALS AND METHODS This retrospective single-institution study included patients with 1-5 extracranial metastases from any solid malignancy treated with SBRT to all metastases. OMD states were defined according to the ESTRO EORTC classification. Overall survival (OS) and progression-free survival (PFS) were analyzed using the Kaplan-Meier method. Discriminatory strength of the classification was assessed by Gönen & Heller's concordance probability estimate (CPE). Univariable and multivariable Cox regression models were used to assess predictors of OS and PFS. RESULTS In total, 385 patients were included. The median follow-up was 24.1 months. The most frequent OMD states were metachronous oligorecurrence (23.6%) and induced oligoprogression (18.7%). Induced OMD patients had significantly shorter median OS (28.1 months) compared with de-novo (46.3 months, p=0.002) and repeat OMD (50.3 months, p=0.002). Median PFS in de-novo OMD patients (8.8 months) was significantly longer than in repeat (5.4 months, p=0.002) and induced OMD patients (4.3 months, p<0.001). The classification system had moderate discriminatory strength for OS and PFS. Multivariable analyses confirmed that compared with induced OMD, de-novo was associated with longer PFS and repeat with longer OS. CONCLUSION All patients were successfully categorized according to the ESTRO EORTC classification system. The discriminatory strength of the classification was confirmed for OMD patients treated with metastases-directed SBRT. Larger multicenter trials are needed to validate the prognostic power for OMD patients irrespective of primary tumor and treatment approach

    Predicting Adverse Radiation Effects in Brain Tumors After Stereotactic Radiotherapy With Deep Learning and Handcrafted Radiomics

    Full text link
    Introduction There is a cumulative risk of 20-40% of developing brain metastases (BM) in solid cancers. Stereotactic radiotherapy (SRT) enables the application of high focal doses of radiation to a volume and is often used for BM treatment. However, SRT can cause adverse radiation effects (ARE), such as radiation necrosis, which sometimes cause irreversible damage to the brain. It is therefore of clinical interest to identify patients at a high risk of developing ARE. We hypothesized that models trained with radiomics features, deep learning (DL) features, and patient characteristics or their combination can predict ARE risk in patients with BM before SRT. Methods Gadolinium-enhanced T1-weighted MRIs and characteristics from patients treated with SRT for BM were collected for a training and testing cohort (N = 1,404) and a validation cohort (N = 237) from a separate institute. From each lesion in the training set, radiomics features were extracted and used to train an extreme gradient boosting (XGBoost) model. A DL model was trained on the same cohort to make a separate prediction and to extract the last layer of features. Different models using XGBoost were built using only radiomics features, DL features, and patient characteristics or a combination of them. Evaluation was performed using the area under the curve (AUC) of the receiver operating characteristic curve on the external dataset. Predictions for individual lesions and per patient developing ARE were investigated. Results The best-performing XGBoost model on a lesion level was trained on a combination of radiomics features and DL features (AUC of 0.71 and recall of 0.80). On a patient level, a combination of radiomics features, DL features, and patient characteristics obtained the best performance (AUC of 0.72 and recall of 0.84). The DL model achieved an AUC of 0.64 and recall of 0.85 per lesion and an AUC of 0.70 and recall of 0.60 per patient. Conclusion Machine learning models built on radiomics features and DL features extracted from BM combined with patient characteristics show potential to predict ARE at the patient and lesion levels. These models could be used in clinical decision making, informing patients on their risk of ARE and allowing physicians to opt for different therapies

    Automated detection and segmentation of non-small cell lung cancer computed tomography images.

    Full text link
    peer reviewedDetection and segmentation of abnormalities on medical images is highly important for patient management including diagnosis, radiotherapy, response evaluation, as well as for quantitative image research. We present a fully automated pipeline for the detection and volumetric segmentation of non-small cell lung cancer (NSCLC) developed and validated on 1328 thoracic CT scans from 8 institutions. Along with quantitative performance detailed by image slice thickness, tumor size, image interpretation difficulty, and tumor location, we report an in-silico prospective clinical trial, where we show that the proposed method is faster and more reproducible compared to the experts. Moreover, we demonstrate that on average, radiologists & radiation oncologists preferred automatic segmentations in 56% of the cases. Additionally, we evaluate the prognostic power of the automatic contours by applying RECIST criteria and measuring the tumor volumes. Segmentations by our method stratified patients into low and high survival groups with higher significance compared to those methods based on manual contours

    MR-Guided Radiotherapy for Head and Neck Cancer: Current Developments, Perspectives, and Challenges

    Full text link
    Based on the development of new hybrid machines consisting of an MRI and a linear accelerator, magnetic resonance image guided radiotherapy (MRgRT) has revolutionized the field of adaptive treatment in recent years. Although an increasing number of studies have been published, investigating technical and clinical aspects of this technique for various indications, utilizations of MRgRT for adaptive treatment of head and neck cancer (HNC) remains in its infancy. Yet, the possible benefits of this novel technology for HNC patients, allowing for better soft-tissue delineation, intra- and interfractional treatment monitoring and more frequent plan adaptations appear more than obvious. At the same time, new technical, clinical, and logistic challenges emerge. The purpose of this article is to summarize and discuss the rationale, recent developments, and future perspectives of this promising radiotherapy modality for treating HNC

    Radiomics in medical imaging—“how-to” guide and critical reflection

    Get PDF
    Radiomics is a quantitative approach to medical imaging, which aims at enhancing the existing data available to clinicians by means of advanced mathematical analysis. Through mathematical extraction of the spatial distribution of signal intensities and pixel interrelationships, radiomics quantifies textural information by using analysis methods from the field of artificial intelligence. Various studies from different fields in imaging have been published so far, highlighting the potential of radiomics to enhance clinical decision-making. However, the field faces several important challenges, which are mainly caused by the various technical factors influencing the extracted radiomic features. The aim of the present review is twofold: first, we present the typical workflow of a radiomics analysis and deliver a practical “how-to” guide for a typical radiomics analysis. Second, we discuss the current limitations of radiomics, suggest potential improvements, and summarize relevant literature on the subject
    corecore